This question was previously asked in

DSSSB TGT Maths Male Subject Concerned- 23 Sep 2018 Shift 1

Option 2 : x + 5y - 4 = 0

__Concept:__

The area of the triangle is given as

where,

(x1, y1), (x2, y2), and (x3, y3) are the coordinates of the vertices of a triangle.

**Given:**

(-4, 0) and (1, -1) are two vertices of a triangle

Area of triangle = 4 units

**Calculation:**

Let the third vertex = (x, y)

(x_{1 }, y_{1}) = (-4, 0)

(x_{2} , y_{2}) = (1, -1)

Apply the above formula

\(Area\;of\;triangle = \frac{1}{2}\left[ { - 4\left( { - 1 - y} \right) + 0\left( {1 - x} \right) + 1\left( {y + x} \right)} \right] = 4\;\)

⇒ \(\frac{1}{2}\left[ {4 + 4y + y + x} \right] = 4\)

⇒ **x + 5y - 4 = 0**