Big Nickel

Would it be cheaper to build it using nickels?

So earlier this month, I was in Sudbury, Ontario delivering an Apple Professional Development session for the Sudbury Catholic District School Board. I had always heard about the “Big Nickel” monument and thought I should search it out. On my way, Justin Levack sent me a text saying I should see what kind of 3 Act Math Task I could think of. This time, rather than trying to develop a question on my own, I tossed it out to the Twitterverse:

As expected, I had some ideas coming to me within minutes including these:

So, just like that, Cathy Yenca went and solved Dan Meyer and Andrew Stadel‘s question and was kind enough to share her work with us so we can all use this task when a related learning goal comes up.

Act 1: Introducing the Problem

Show your students this video or the photo below:

Big Nickel - Act 1 - Up Close

Act 2: Students Request Information and You Give It To Them

The approach you choose to have your students answer whether constructing the Big Nickel with actual Canadian Nickels vs. using the material they actually used to build the monument would be more cost effective will depend on the level of your mathematics students. Here, I’ll give two approaches to make this task accessible by more students.

All students would benefit from these two photos:

Diameter of the Big Nickel in Sudbury, Ontario
Big Nickel - Act 2 - Diameter of Big Nickel

Big Nickel Divided into 12 Triangles
Big Nickel - Act 2 - Divided into 12 Triangles

Thickness of the Big Nickel

The thickness of the Big Nickel will serve as the height of the prism in order to calculate the volume. By taking the area of the base and multiplying by the thickness (height), students will know how much space the Big Nickel occupies:

Big Nickel - Act 2 - Thickness of Big Nickel

Thickness of a 1951 Canadian Nickel

The thickness of a 1951 Canadian Nickel will serve as the “height” in the volume formula when calculating how much space is occupied by an actual nickel:

Big Nickel - Act 2 - Thickness of 1951 Canadian Nickel

Method #1: No Trigonometry – Volume and Proportional Reasoning

If your students have not covered trigonometry or primary trigonometric ratios yet, you’ll want to give the students a little more information. Here are some details you can give your students:

Base and Height of One (1) Triangular Section of Big Nickel

Students can use these dimensions to determine the area of one triangular section of Big Nickel, then multiply by 12 to get the area of the base in order to help them find the total volume:

Big Nickel - Act 2 - Height and Base of Triangle

Base and Height of One (1) Triangular Section of a 1951 Canadian Nickel

Students can use these dimensions to determine the area of one triangular section of a 1951 Canadian Nickel as they work towards finding the volume:

Big Nickel - Act 2 - Height and Base of 1951 Canadian Nickel

More Info Provided: Width of Actual Nickel

Thanks to John Golden for sharing the following image on Twitter. The online math community is “Golden”!

Big Nickel - Act 2 More Info

Method #2: Using Primary Trigonometric Ratios

If your students have covered the primary trigonometric ratios, you can opt to use the following images that force students to use trig ratios to find a working solution:

Height of a Right Angle Triangle in Big Nickel

Students know that the diameter of Big Nickel is 9.1 m and thus the height of the right angle triangle we can form in one of the 12 triangular sections
is 4.55 m. From here, students must use their knowledge of primary trigonometric ratios to find the base of the triangular section:

Big Nickel - Act 2 - Height of Triangle for Trigonometry

Using a similar approach to the above image, students must also use their knowledge of primary trigonometric ratios to find the base of a triangular section of a 1951 Canadian Nickel shown below:

Big Nickel - Act 2 - Height of 1951 Canadian Nickel for Trigonometry

Act 3: Students Compare Their Cost to Actual Cost

Once students determine the volume of Big Nickel and a 1951 Canadian Nickel, they can determine how many nickels it would take to build the monument as well as the total cost to do so.

Big Nickel - Act 3 - Cost of the Big Nickel Monument in Sudbury, Ontario

The Big Nickel was completed in 1964 for approximately 35,000 according to <a href="http://en.wikipedia.org/wiki/Big_Nickel" title="Wikipedia Big Nickel Information Sudbury Ontario" target="_blank">Wikipedia</a>.  Information about the 1951 Canadian Nickel also according to <a href="http://en.wikipedia.org/wiki/Nickel_(Canadian_coin)" title="1951 Canadian Nickel Wikipedia Details" target="_blank">Wikipedia</a>.  My assumption is that the nickels would be  melted down to create the monument, but some students may assume you're just "dropping the nickels in" or something along those lines.  Great discussion to be had there.  <h2>Sequels, Extensions & Additional Images</h2>  Here are some additional extensions and <a href="https://drive.google.com/folderview?id=0B3N0FZASrw5eflJjMVB4bjhBNmVITC1DTkE3QjVFOWZrZ1VER3Z2RmhMRGViV2FIdEZrRW8&usp=sharing" target="_blank">images</a> that are included in the <a href="https://drive.google.com/file/d/0B3N0FZASrw5eazdMQmlsWFN5T2s/view?usp=sharing" target="_blank">slide deck</a> available for download:  <ul> 	<li>The City of Windsor wants to build a "Double Big Nickel" where the total volume is doubled. Can you just double the dimensions?</li>  	<li>The WFCU Arena in Windsor cost a total of71 Million to build. What percentage of that cost would it take to construct the Big Nickel?

  • When constructing the Big Nickel, construction workers need to know the interior angle measures in order to build it. What are they?
  • If the Big Nickel needs to be taken off-side for repair, what would the interior angles be for the supports needed?
  • If resurfacing the entire Big Nickel, how much would it cost?
  • Knowledgehook Embedded Gameshow Formative Assessment

    Check out this nifty new feature that Knowledgehook came up with called “Gameshow Embedding”. Not only can you create a Gameshow as a formative assessment, you can actually embed it as a full Gameshow in your blog/website/LMS or embed each question individually throughout your post! Here’s a couple sample problems I created for this task:

    Check Out @MathyCathy’s Thoughts & Working Solution

    Cathy Yenca was the first to answer Dan Meyer and Andrew Stadel’s question(s) and she was kind enough to share her work via a TACKK! Click here or on the image below to see the full solution:

    My Two Cents on Five Cents - Cathy Yenca MathyCathy's Big Nickel Solution

    MathyCathy’s Solution

    Cathy also blogged about our co-creation of this task from a great distance over a very short period of time! Read about it here!


    Direct Links to Resources Available For Download:

    Did you try it?

    Be sure to share your experience in the comments down below…

    Download The Task and Resources

    Grab all the videos, images and resources by clicking download below:


    Download



    Share With Your Tribe:



    About Kyle Pearce

    I’m Kyle Pearce and I am a former high school math teacher. I’m now the K-12 Mathematics Consultant with the Greater Essex County District School Board, where I uncover creative ways to spark curiosity and fuel sense making in mathematics. Read more.


    Access Other Real World Math Tasks




    Search More 3 Act Math Tasks

    Grade 1 [Number Sense and Numeration - NS1, Number Sense and Numeration - NS3]

    Grade 2 [Measurement - M1, Number Sense and Numeration - NS1, Number Sense and Numeration - NS2, Number Sense and Numeration - NS3]

    Grade 3 [Measurement - M1, Number Sense and Numeration - NS1, Number Sense and Numeration - NS3]

    Grade 4 [Measurement - M1, Number Sense and Numeration - NS1, Number Sense and Numeration - NS3, Patterning and Algebra - PA2]

    Grade 5 [Measurement - M2, Number Sense and Numeration - NS1, Number Sense and Numeration - NS3, Patterning and Algebra - PA2]

    Grade 6 [Data Management and Probability - DP3, Measurement - M2, Number Sense and Numeration - NS1, Number Sense and Numeration - NS2, Number Sense and Numeration - NS3, Patterning and Algebra - PA1, Patterning and Algebra - PA2]

    Grade 7 [Data Management and Probability - DP3, Geometry and Spatial Sense - GS1, Measurement - M2, Number Sense and Numeration - NS1, Number Sense and Numeration - NS2, Number Sense and Numeration - NS3, Patterning and Algebra - PA1, Patterning and Algebra - PA2]

    Grade 8 [Data Management and Probability - DP1, Data Management and Probability - DP3, Geometry and Spatial Sense - GS2, Measurement - M2, Number Sense and Numeration - NS1, Number Sense and Numeration - NS2, Number Sense and Numeration - NS3, Patterning and Algebra - PA1, Patterning and Algebra - PA2]

    MAP4C [Mathematical Models - MM2, Mathematical Models - MM3]

    MAT1LMAT2LMBF3C [Data Management - DM1, Data Management - DM2, Geometry and Trigonometry - GT1, Geometry and Trigonometry - GT2, Mathematical Models - MM1, Mathematical Models - MM2, Mathematical Models - MM3]

    MCF3M [Exponential Functions - EF2, Quadratic Functions - QF1, Quadratic Functions - QF2, Quadratic Functions - QF3, Trigonometric Functions - TF1, Trigonometric Functions - TF3]

    MCR3U [Characteristics of Functions - CF1, Characteristics of Functions - CF2, Exponential Functions - EF2, Exponential Functions - EF3, Trigonometric Functions - TF3]

    MCT4C [Exponential Functions - EF1, Trigonometric Functions - TF3]

    MDM4U [Counting and Probability - CP2, Organization of Data For Analysis - DA2, Probability Distributions - PD1, Statistical Analysis - SA1, Statistical Analysis - SA2]

    MEL4EMFM1P [Linear Relations - LR1, Linear Relations - LR2, Linear Relations - LR3, Linear Relations - LR4, Measurement and Geometry - MG2, Measurement and Geometry - MG3, Number Sense and Algebra - NA1, Number Sense and Algebra - NA2]

    MFM2P [Measurement and Trigonometry - MT1, Measurement and Trigonometry - MT2, Measurement and Trigonometry - MT3, Modelling Linear Relations - LR1, Modelling Linear Relations - LR2, Modelling Linear Relations - LR3, Quadratic Relations in y = ax^2 + bx + c Form - QR1, Quadratic Relations in y = ax^2 + bx + c Form - QR3]

    MHF4U [Exponential and Logarithmic Functions - EL2, Exponential and Logarithmic Functions - EL3]

    MPM1D [AG3, Analytic Geometry - AG1, Analytic Geometry - AG2, LR1, LR2, LR3, MG2, MG3, NA1, Number Sense and Algebra - NA2]

    MPM2D [AG1, AG2, AG3, QR2, Quadratic Relations - QR4, T2, T3]

    Subscribe