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Digging	Deeper	into	Proportional	Relationships		

A	check	list	of	seven	important	ideas	

This	paper	discusses	seven	important	ideas	related	to	proportional	

relationships.	It	is	not	intended	to	be	a	systematic	and	comprehensive	

treatment	of	the	subject.	Rather,	it	singles	out	seven	important	ideas	that	are	

often	missed	in	treatments	of	proportionality.	The	treatments	are	not	detailed	

or	complete,	but	sketches	to	serve	as	a	basis	for	discussion.	

	

1.	 	Understanding	when	one	quantity	"is	proportional	to"	another	

2.	 	Focusing	on	"constant	ratio"	rather	than	"equivalent	ratios"	

3.	 	Clarifying	the	role	of	"per	unit	quantities"	

4.	 	Illustrating	the	requirement	of	"uniformity"		

5.	 	Differentiating	two	roles	of	"scaling"	in	proportional	relationships		

6.	 	Providing	a	way	to	think	about	the	"rate	vs.	ratio"	issue.	

7.	 	Exploring	many	"situations"	involving	proportional	relationships	
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1.	 	Understanding	when	one	quantity	"is	proportional	to"	another	
It	is	important	to	use	the	language	is	proportional	to	when	talking	about	a	

proportional	relationship.	For	example,		

	 a.	 At	a	constant	speed:	distance	traveled	is	proportional	to	time	of	travel.	

	 b.	 In	circles:	the	circumference	is	proportional	to	the	radius.		

	 c.	 The	sales	tax	on	an	item	is	proportional	to	the	given	cost	of	the	item.		

This	"is	proportional	to"	language	goes	hand	in	hand	with	the	formulas	used	

to	express	the	proportional	relationship:	

a'.	 At	a	constant	speed	of	6	mph:		 	 d	=	6t	 	 	

b'.	 In	circles:	 		 	 	 	 	 	 c	=	2πr	

c'.	 With	sales	tax	at	8.5%:	 	 	 	 t	=	0.085c	

Each	of	the	numbers	6,	2π,	and	0.85	is	the	constant	of	proportionality	of	the	

relationship.		

A	formal	definition	of	the	notion	"is	proportional	to"	can	be	based	on	the	

structure	of	these	formulas:	

Definition	1:	A	variable	quantity	q	is	proportional	to	another	variable	

quantity	p	if	q	is	a	multiple	by	a	constant	k	of	p:		

	 q	=	kp	

Such	quantities	q	and	p	are	said	to	be	in	a	proportional	relationship.	

The	notion	"is	proportional	to"	is	so	important	that	it	has	its	own	symbol	"∝ ".	
So	in	the	above	cases	we	can	write:	

	 a''.	 At	a	constant	speed:		 	 d	=	∝ t	 	 (d	is	proportional	to	t)	

	 b''.	 In	circles:	 		 	 	 	 c	=	∝ r	 	 (c	is	proportional	to	r)	

	 c''.	 Sales	tax:	 	 	 	 	 t	=	∝c	 	 (t	is	proportional	to	c)	
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Use	of	the	phrase	"is	proportional	to"	is	universal	in	mathematics	and	its	

applications.	Still,	in	many	middle	school	treatments	of	proportional	

relationships,	this	phrase	is	seldom	heard.	Instead,	the	discussion	is	about	

"ratios"	and	"proportions".	

2.	 	Focusing	on	"constant	ratio"	rather	than	"equivalent	ratios"	

School	mathematics	treatments	of	ratio	tend	to	focus	on	"equivalent"	ratios.	

For	example,	the	ratios	6:18	and	9:27	are	equivalent.	This	is	usually	expressed	

in	fraction	notation:	

	 		 6
18

= 9
27
	 		 	 	

In	general,	a	statement	that	two	ratios	are	equivalent	is	called	a	proportion:	

	 	 p1
q1

= p2
q2
	

However,	once	the	curriculum	moves	on	to	proportional	relationships,	it	is	

important	to	emphasize	that	a	proportional	relationship	is	a	relationship	

between	two	variable	quantities.	In	doing	this,	the	notion	of	two	equivalent	

ratios	is	awkward.	The	related	notion	of	a	constant	ratio	is	much	better	suited.	

Specifically,	we	can	say:	

In	a	proportional	relationship,	the	two	variable	quantities		
have	a	constant	ratio.	

Example	(from	part	1):		

Motion	at	a	constant	
speed	of	6	mph	 d	=	6t	

d
t
= 6 	

On	the	left	is	the	standard	formula	for	expressing	this	proportional	

relationship.	On	the	right	is	the	same	formula	expressed	as	a	ratio.	In	talking	

about	this	ratio,	we	say	"d	and	t	have	a	constant	ratio".		 	 	
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The	constant	ratio	applies	to	an	infinite	number	of	pairs	d	and	t.	This	suggests	

the	following	alternative	definition	of	"proportional	to":	

Definition	2:	One	variable	quantity	q	is	proportional	to	another	variable	

quantity	p	if	they	have	a	constant	ratio	k:		

	

q
p
= k

	

Notice	that	Definitions	1	and	2	are	equivalent	since	the	defining	equations	are	

algebraically	equivalent.		

As	an	aside,	we	note	that	Definition	2	can	be	useful	in	uniting	all	the	different	

kinds	of	proportionality.	We	illustrate	with	three	common	types.	

type	 expressed	in	a	formula		 expressed	as	a	
constant	ratio	

direct	proportionality	 y	=	kx	 y
x
= k 	

inverse	proportionality	 y = k
x
	 xy = k 	

joint	proportionality	 y	=	kxw	 y
xw

= k 	

We	see	that	each	type	of	proportional	relationship	involves	a	constant	ratio	

of	products	of	variable	quantities.	Other	important	proportional	relationships	

involve	a	combination	of	different	types:	

universal	law	of	

gravitation	
F = G m1m2

d 2
	

Fd 2

m1m2

= G 	

Note	that	in	each	case,	the	"constant"	in	the	constant	ratio	is	the	constant	of	

proportionality	of	the	relationship.	
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3.	 	Clarifying	the	role	of	"per	unit	quantities"	

Consider	the	following	examples	of	proportional	relationships:	

i.	 The	distance	sound	travels	is	proportional	to	the	time	of	travel.		

	 The	speed	of	sound	is	about	330	meters	per	second.	

ii.	 In	gold	nuggets,	the	mass	is	proportional	to	the	volume.	

	 The	density	of	gold	is	19.8	grams	per	cubic	cm.	

iii.	 If	apples	sell	for	3	pounds	for	$4,	the	cost	is	proportional	to	the	weight.	

	 The	unit	price	is	3/4	pounds	per	dollar.	

In	each	case,	the	second	statement	gives	the	constant	of	proportionality	of	

the	proportional	relationship.	This	constant	is	a	"per	unit	quantity".	That	is,	it	

tells	us	how	much	of	one	quantity	there	is	for	one	unit	of	the	other.	(Note	that	

a	"unit"	can	be	a	"derived	unit",	as	in	the	unit	"cubic	cm"	in	(iii).)		

This	use	of	"per"	is	widespread	in	comparing	two	quantities	by	dividing	one	

quantity	with	a	"unit"	by	another	one	with	a	"unit".	It	can	also	occur	in	a	one-

time	comparison	where	there	is	no	proportional	relationship.	For	example,	

suppose	we	have	24	students	and	6	computers.	To	see	the	relationship	

between	these	quantities	we	can	divide	24	by	6	and	get	"4	students	per	

computer".	This	is	also	a	"per	unit	quantity".1	

Understanding	this	feature	of	proportional	relationships	depends	on	a	theory	

of	"units	analysis"	appropriate	for	school,	with	its	"algebra	of	units",	including	

"canceling	of	units".	It	plays	the	same	role	as	the	more	formal	theory	of	

"dimensional	analysis"	used	in	science.	In	short,	"units	analysis"	and	"per	unit	

quantities"	are	an	important	part	of	understanding	proportional	relationships.		

																														 																		
1	There	are	standard	names	(speed,	density,	unit	price)	for	standard	cases	such	as	(i),	(ii),	
and	(iii).	But	it	is	not	clear	what	name	we	would	give	to	the	number	4	here.		
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4.	 	Illustrating	the	requirement	of	"uniformity"		

Consider	the	following	situation:	

Situation:	A	faucet	is	dripping	water	steadily	into	a	tub.	After	a	time	of	2	hours,	

there	are	6	liters	of	water	in	the	tub.	It	continues	to	drip	steadily	for	several	

more	hours.		

The	word	"steadily"	plays	a	key	role	here.	It	makes	sense	to	interpret	it	as	

meaning	that	the	volume	of	water	in	the	tub	is	increasing	"uniformly"	over	

time.	That	is,	during	any	time	periods	of	the	same	length,	the	increase	in	the	

volume	of	water	in	the	tub	is	the	same.2	

Under	this	interpretation,	it	would	be	expected	that	12	liters	of	water	would	

be	expected	after	4	hours,	3	liters	after	half	an	hour,	etc..		

In	this	situation	we	can	say	that	"the	accumulated	volume	is	proportional	to	

the	elapsed	time".	Without	the	assumption	of	"uniformity",	there	is	not	a	

proportional	relationship.		

In	every	situation	in	which	there	is	a	proportional	relationship,	there	is	some	

sort	of	"uniformity"	inherent	in	the	situation,	though	this	may	take	on	rather	

different	forms.	For	example,	there	is	uniformity	in	examples	(i)	and	(ii)	in	#3	

above	because	of	a	physical	law,	and	in	(iii),	it	is	"by	decree".		

Here	are	other	examples:	

																														 																		
2	It	also	makes	sense	to	interpret	the	situation	as	involving	both	zero	volume	and	zero	time	
at	the	start	of	the	drip.	That	is,	we	interpret	time	as	"elapsed	time"	rather	than	clock	time.	
Along	with	"uniformity",	this	"zero-zero"	assumption	for	a	situation	is	necessary	for	any	
proportional	relationship	based	on	the	situation.		
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i.	 The	volume	of	water	in	a	rectangular	tank	is	proportional	to	the	depth.	In	

fact	v	=	Ad,	where	A	is	the	cross	sectional	area	of	the	tank.	The	uniformity	is	

the	result	of	a	formula	from	solid	geometry:	volume	=	base	area	x	height.	

ii.	 The	height	of	a	stack	of	identical	books	is	proportional	to	the	number	of	

books.	The	uniformity	comes	from	the	word	"identical".	If	the	stack	was	of	

books	of	differing	thicknesses,	there	would	not	be	a	proportional	relationship.		

iii.	 In	an	enlargement	on	a	photocopy	machine	set	at	155%,	lengths	in	the	

enlargement	are	proportional	to	the	corresponding	lengths	in	the	original.	

Here	the	uniformity	comes	from	the	setting	155%	of	the	machine.	

5.	 	Differentiating	two	roles	of	"scaling"	in	proportional	relationships		
A.	 True	scaling	behavior:	scaling-in-tandem	

Consider	this	example	of	a	proportional	relationship:	

The	height	of	a	stack	of	identical	books	is	proportional	to	the	number	of	

books.	(See	example	(ii)	in	Section	4	above.)	

In	reasoning	about	this	situation,	it	is	clear	that	if	we	double	the	number	n	of	

books,	the	height	h	of	the	stack	is	doubled.	Similarly,	if	we	want	to	triple	the	

height	h	of	the	stack,	we	need	to	triple	the	number	n	of	books.	

In	general	we	can	use	a	"scale	factor"	s	to	scale	a	quantity	up	or	down.	The	

example	shows	something	important:	In	a	proportional	relationship	between	

two	quantities,	the	quantities	"scale	in	tandem".		

This	behavior	is	clear	if	we	use	a	formula	for	the	relationship.	If	books	are	3	

cm	thick,	then	a	formula	for	height	h	in	terms	of	count	n	is	

	 (1)	 	 h	=	3n	

Multiplying	both	sides	by	s	shows	that	scaling	n	by	any	factor	s	results	in	

scaling	the	h	by	s	also.	This	property	is	called	"scaling-in-tandem".		
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Similarly,	we	can	argue	that	if	any	two	variable	quantities	y	and	x	scale	in	

tandem,	they	are	related	by	a	formula	of	the	form	y	=	kx,	for	some	constant	k.	

In	fact,	another	way	of	characterizing	a	proportional	relationship	is	to	say	that	

it	is	a	relationship	where	the	two	related	quantities	"scale-in-tandem".	

Note	that	in	this	example	of	scaling,	the	scale	factor	s	is	not	a	constant	of	

proportionality.	It	is	a	way	of	stating	a	property	of	a	proportional	relationship.	

The	property	holds	for	any	positive	scale	factor	s.		

B.	 Scaling	when	the	constant	of	proportionality	is	a	scale	factor		

The	scaling	behavior	in	(A)	above	is	to	be	contrasted	with	cases	where	a	scale	

factor	is	the	constant	of	proportionality	of	a	proportional	relationship.		

For	example,	given	two	similar	figures,	one	3	times	the	size	of	the	other,	

corresponding	lengths	in	the	two	figures	are	proportional:	Specifically,	lengths	

in	one	figure	are	3	times	the	corresponding	lengths	in	the	other	figure:	

	 (2)	 	 L'	=	3L,	

Here,	L	is	a	length	in	one	figure	and	L'	is	the	corresponding	"scaled"	length	in	

the	larger	figure.		

Our	main	point	is	that	the	"scaling"	by	a	factor	of	3	in	(2)	is	completely	

different	from	the	"scaling	in	tandem"	discussed	in	Part	A	above.	Here	the	

“scale	factor"	3	is	constant;	it	is	the	constant	of	proportionality	of	the	

proportional	relationship.3	

																														 																		
3	Although	the	constant	of	proportionality	3	in	a	case	like	(2)	is	usually	thought	of	as	being	
a	dimensionless	scale	factor,	it	also	makes	sense	to	think	of	it	as	a	"per	unit	quantity":	"3	cm	
in	the	larger	figure	per	cm	in	the	smaller	figure".		
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6.	 	Providing	a	way	to	think	about	the	"rate	vs.	ratio"	issue.	
A	question	often	arises:	What	is	the	difference	between	a	rate	and	a	ratio?		

There	are	several	common	answers.	For	example,	"In	a	ratio	the	units	of	the	

two	quantities	are	the	same,	in	a	rate	they	are	different."	But	none	of	these	

answers	gets	deeply	enough	into	the	issue.	Here	we	suggest	a	"structural"	way	

of	thinking	about	this	issue.		

In	developing	this	"structural"	picture,	it	helps	to	include	ratios	with	more	

than	two	terms,	since	there	is	no	controversy	in	referring	to	these	as	"ratios".	

For	example,	consider	the	three-term	ratio		

	 	 1	:	2	:	8	

With	this	ratio	we	can	associate	these	9	quotients:	

	 	 1	÷	1	=	1	 	 1	÷	2	=	0.5	 	 1	÷	8	=	0.125	

	 	 2	÷	1	=	2	 	 2	÷	2	=	1	 	 2	÷	8	=	0.25	

	 	 8	÷	1	=	8	 	 8	÷	2	=	4	 	 8	÷	8	=	1	

If	this	ratio	(1:2:8)	was	a	recipe:		

	 	 salt	(tsp)	:	flour	(oz.)	:	water	(cups),		

then	these	quotients	have	meanings	like	this:		

	 	 0.5	tsp	salt	per	oz.	of	flour	

	 	 0.25	oz.	flour	per	cup	of	water	

These	are	"per	unit	quantities".	They	act	like	things	we	call	"rates",	such	as	a	

constant	speed	of	6	miles	per	hour.	

So	we	can	say	this:	

	 (1)	 A	"ratio-like	quantity"	is	an	n-tuple,	where	n	=	2,	3,	4,	....	

	 (2)	 A	"rate-like	quantity"	is	any	quotient	in	a	ratio-like	quantity.	
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Whatever	we	call	them,	the	quantities	in	(1)	and	(2)	are	clearly	important,	and	

also	clearly	very	different.	(We	will	shorten	these	to	"ratio"	and	"rate"	below.)	

Most	ratios	in	the	school	curriculum	are	2-tuples.	A	ratio	5:2	(a	2-tuple)	has	

two	rates	associated	with	it	(quotients):	5÷2	=	2.5	and	2÷5	=	0.4.		

So	if,	say,	there	is	a	student:	computer	ratio	5:2,	then	the	two	rates	are:	

	 -	 2.5	students	per	computer	

	 -	 4	tenths	of	a	computer	per	student	

In	short:	An	n-term	ratio	has	n2 quotients	associated	with	it,	and	these	

quotients	act	like	rates.		

7.	 	Exploring	many	"situations"	involving	proportional	relationships	

The	best	way	to	talk	clearly	about	a	proportional	relationship	is	to	be	explicit	
about	the	"situation"	it	is	based	on.	For	any	proportional	relationship,	two	
things	are	required	of	the	situation:	

	a.	There	are	two	quantities	in	the	situation	that	"co-vary".	

The	idea	is	that	when	one	quantity	changes,	the	other	changes	too.	More	
specifically,	the	two	quantities	change	in	such	a	way	that	their	ratio	is	
constant.		

b.		There	is	something	about	the	situation	that	is	"uniform".	

(See	part	4	above.)	The	kind	of	uniformity	is	different	for	different	
situations.	It	may	be	the	constant	rate	of	speed	of	some	process,	or	the	
constant	thickness	of	a	book	in	stacks	of	identical	books.	Whatever	the	
uniformity	is,	it	is	the	basis	for	the	constant	of	proportionality.		

	

Exploring	many	real	situations	involving	proportional	relationships	can	

contribute	to	a	general	understanding	of	such	relationships.	To	give	the	idea	

of	the	variety	of	such	situations,	here	is	an	initial	listing	of	seven	different	

types:	
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1.	Stacks	

In	this	sort	of	situation	there	are	stacks	of	many	identical	objects.	An	example	

stacks	of	paper:	the	height	of	the	stack	is	proportional	to	the	number	of	sheets.	

2.	Unit	conversions	

Example:	Since	1	inch	=	2.54	centimeters,	we	have	C	=	2.54	I,	saying	that	a	

measurement	C	in	cm	is	proportional	to	the	same	measurement	I	in	inches.	

3.	Prices	

There	is	a	proportional	relationship	p	=	Uq	between	the	total	price	p	paid	for	a	

product	and	the	amount	q	purchased.	The	constant	of	proportionality	U	is	the	

price	of	a	“unit”	amount	and	is	called	the	"unit	price".		

4.	Sales	tax	

At	a	sales	tax	rate	of	8.25%	paid	on	a	purchase	price,	there	is	a	proportional	

relationship	t	=	0.0825	p	between	the	tax	t	paid	and	the	quoted	price	p.	

5.	Slopes	

In	ramps	with	slope	s	there	is	a	proportional	relationship	V	=	sH	between	the	

vertical	"rise"	V	and	the	horizontal	"run"	H	of	the	ramp.		

6.	Shape	relationships	in	an	infinite	set	of	similar	figures	

There	is	a	proportional	relationship	c	=	π	d	between	the	circumference	c	and	

the	diameter	d	of	a	circle.	

7.	Size	relationships	in	a	pair	of	similar	figures	

Between	any	pair	of	similar	figures	there	is	a	size	relationship	between	the	

length	of	a	side	in	one	figure	and	the	length	of	the	corresponding	side	in	the	

other.	For	example,	in	a	155%	enlargement	of	a	picture,	there	is	a	

proportional	relationship	e	=	1.55	o	between	the	length	e	of	any	part	of	the	

enlargement	and	the	length	o	of	the	corresponding	part	of	the	original.	


