Hot Chocolate

How many scoops will you need for 3 hot chocolates?

Sparking Curiosity to Promote Conceptual Understanding of Multiplication

TITM - Hot Chocolate [3 Act Task] Featured Image

This 3 act math task was inspired by work we are doing at my district around fractions, measurement, and proportional reasoning.

In this real world math task, we’ve attempted to create a task that is accessible by students in Kindergarten and primary grade levels, but could be extended into the later grades by simply asking more complex questions with intentionality.

So let’s get going!

Act 1: Sparking Curiosity

Show students this video.

While I typically have students do a rapid write of what they notice and what they wonder, if we are in a kindergarten through grade 3(ish) class, it’s likely that students are sitting with you on the carpet. In that case, it might make more sense for them to think of what they notice and wonder in their minds and then share out with their partners through a think, pair, share.

While Yvette Lehman and I were leading this task in a grade 3 classroom recently, we intentionally told students that they could notice and wonder ANYTHING and EVERYTHING that comes to mind with a big BUT…

When sharing with your neighbours, do not share any numbers that you might have noticed or wondered. We were lucky that this pre-planned instruction came to mind right before we led the task, because otherwise, some students may have immediately came up with “9” as an answer and then the task as well as the sense making would likely be dead.

Here’s some of the “everything and anything” students noticed and wondered on chart paper (remembering that nothing with numbers would not be shared yet):

  • I notice hot chocolate.
  • I notice a glass.
  • I wonder if the hot chocolate is already made in the container?
  • I wonder if someone is making hot chocolate?
  • I wonder if that is YOU in the video.
  • And many others…

At this point, we hadn’t landed on any particular wonder yet.

Act 2: Reveal More Information

We then said… let’s watch this video to see if we have any more noticings and wonderings.

After watching this clip, students had more noticings and wonderings:

  • I notice more glasses.
  • I wonder if the person is going to make more hot chocolate?
  • I wonder how many scoops they’ll need. I think I know!
  • I wonder who is going to drink the other hot chocolates?
  • And many others…

At this point, we took their wonders and said:

I think this person is going to be making 3 whole glasses of hot chocolate!

Why don’t we start by thinking in our minds about how many scoops we needed for the first glass and then how many scoops we’ll need for ALL 3 GLASSES?

BUT – we don’t just want to know how many. We want you to convince us of how many in any way you want.

Manipulatives are on your tables, so with your partner head to your stations and try to make a plan of how you’re going to convince us of how many scoops were needed in total to make 3 hot chocolates.

And, they were off to the races.

The materials on their table included:

  • Connecting cubes.
  • Square tiles.
  • Integer chips (or “circles” with one colour on one side and another on the other).
  • Large paper.

We would have liked to have relational rods on the table as well, but there were none available in the manipulative kit we were working with. Bummer.

My Challenge to YOU: Fuel Sense Making

What do you think the students might do with this task?

My challenge to you is to leave a comment below anticipating what you think students might do in a grade 3 class.

You can also anticipate what would students in YOUR class do to convince you of the total number of scoops?

How might you modify this task to work in your classroom with your diverse learners?

If you want to be bold, test what you’ve anticipated by doing the task in your classroom and come back to report your thinking in the comments.

If we have enough people taking interest in this task, I’ll update this post with some of the intentional ways we fuelled sense making in this particular situation and we will share student work

DOWNLOAD THE TASK TIP SHEET & RESOURCES

Want to make sure this task goes off without a hitch?

Download the media resources and 2-page Hot Chocolate 3 Act Task Tip Sheet that you can print and have with you close by to ensure that you maximize your chances of Making a Math Moment That Matters for your students!

Act 3: The Big Reveal

After consolidating learning using student generated solution strategies and by extending their thinking intentionally, we can share what really happened with this video.

I hope you enjoy the task!

Don’t forget to take on the CHALLENGES I’ve set out for you.

Looking forward to hearing from you ALL in the comments! Remember, we don’t learn if we don’t reflect.

Extension Questions:

There are quite a few different directions you could go in after this.

Some you might consider are:

  • How many scoops do you need for 3 whole glasses and 1 half glass of hot chocolate?
  • Can you show your thinking using additive and multiplicative thinking?
  • How many scoops do you need for 27 glasses?
  • How many scoops do you need for ANY number of glasses? How would you describe this?

Cara had a great question about how we might ask a question that would illicit division, which had me thinking. Check out her comment and my suggestion here.

Can you think of others?

Post in the comments below!


DOWNLOAD THE COMPLETE GUIDE

Take the learning with you by downloading the complete guide that you can save and print to share with colleagues during your next professional learning community meeting or for your own independent learning!



Share With Your Tribe:



About Kyle Pearce

I’m Kyle Pearce and I am a former high school math teacher. I’m now the K-12 Mathematics Consultant with the Greater Essex County District School Board, where I uncover creative ways to spark curiosity and fuel sense making in mathematics. Read more.


Access Other Real World Math Tasks




Search More 3 Act Math Tasks

Grade 1 [Number Sense and Numeration - NS1, Number Sense and Numeration - NS3]

Grade 2 [Measurement - M1, Number Sense and Numeration - NS1, Number Sense and Numeration - NS2, Number Sense and Numeration - NS3]

Grade 3 [Measurement - M1, Number Sense and Numeration - NS1, Number Sense and Numeration - NS3]

Grade 4 [Measurement - M1, Number Sense and Numeration - NS1, Number Sense and Numeration - NS3, Patterning and Algebra - PA2]

Grade 5 [Measurement - M1, Measurement - M2, Number Sense and Numeration - NS1, Number Sense and Numeration - NS3, Patterning and Algebra - PA2]

Grade 6 [Data Management and Probability - DP3, Measurement - M2, Number Sense and Numeration - NS1, Number Sense and Numeration - NS2, Number Sense and Numeration - NS3, Patterning and Algebra - PA1, Patterning and Algebra - PA2]

Grade 7 [Data Management and Probability - DP3, Geometry and Spatial Sense - GS1, Measurement - M2, Number Sense and Numeration - NS1, Number Sense and Numeration - NS2, Number Sense and Numeration - NS3, Patterning and Algebra - PA1, Patterning and Algebra - PA2]

Grade 8 [Data Management and Probability - DP1, Data Management and Probability - DP3, Geometry and Spatial Sense - GS2, Measurement - M2, Number Sense and Numeration - NS1, Number Sense and Numeration - NS2, Number Sense and Numeration - NS3, Patterning and Algebra - PA1, Patterning and Algebra - PA2]

MAP4C [Mathematical Models - MM1, Mathematical Models - MM2, Mathematical Models - MM3]

MAT1LMAT2LMBF3C [Data Management - DM1, Data Management - DM2, Geometry and Trigonometry - GT1, Geometry and Trigonometry - GT2, Mathematical Models - MM1, Mathematical Models - MM2, Mathematical Models - MM3]

MCF3M [Exponential Functions - EF2, Quadratic Functions - QF1, Quadratic Functions - QF2, Quadratic Functions - QF3, Trigonometric Functions - TF1, Trigonometric Functions - TF3]

MCR3U [Characteristics of Functions - CF1, Characteristics of Functions - CF2, Exponential Functions - EF2, Exponential Functions - EF3, Trigonometric Functions - TF3]

MCT4C [Exponential Functions - EF1, Trigonometric Functions - TF3]

MCV4U [Derivatives and Their Applications - DA2]

MDM4U [Counting and Probability - CP2, Organization of Data For Analysis - DA2, Probability Distributions - PD1, Statistical Analysis - SA1, Statistical Analysis - SA2]

MEL4EMFM1P [Linear Relations - LR1, Linear Relations - LR2, Linear Relations - LR3, Linear Relations - LR4, Measurement and Geometry - MG1, Measurement and Geometry - MG2, Measurement and Geometry - MG3, Number Sense and Algebra - NA1, Number Sense and Algebra - NA2]

MFM2P [Measurement and Trigonometry - MT1, Measurement and Trigonometry - MT2, Measurement and Trigonometry - MT3, Modelling Linear Relations - LR1, Modelling Linear Relations - LR2, Modelling Linear Relations - LR3, Quadratic Relations in y = ax^2 + bx + c Form - QR1, Quadratic Relations in y = ax^2 + bx + c Form - QR2, Quadratic Relations in y = ax^2 + bx + c Form - QR3]

MHF4U [Characteristics of Functions - CF3, Exponential and Logarithmic Functions - EL2, Exponential and Logarithmic Functions - EL3]

MPM1D [AG3, Analytic Geometry - AG1, Analytic Geometry - AG2, LR1, LR2, LR3, MG1, MG2, MG3, NA1, Number Sense and Algebra - NA2]

MPM2D [AG1, AG2, AG3, QR2, Quadratic Relations - QR3, Quadratic Relations - QR4, T2, T3]

Subscribe